定义:
- $\varphi\left(n\right)$,表示小于等于$n$的和$n$互质的数的个数
性质:
-
积性函数
对任意满足$\operatorname{\mathrm{gcd}}\left(a,b\right)=1$的整数$a,b$,有$\varphi\left(a,b\right)=\varphi\left(a\right)\cdot\varphi\left(b\right)$
特别的,当$n$是奇数时$\varphi\left(2n\right)=\varphi\left(n\right)$
-
$n=\sum_{\frac{d}{n}}^{\placeholder{}}\varphi\left(d\right)$ **,****$n$**的所有正约数的欧拉函数之和等于n本身
如$n=6$,$d=1,2,3,6$
$ \varphi(1) = 1 $,$ \varphi(2) = 1 $,$ \varphi(3) = 2 $ ,$ \varphi(6) = 2 $ 和为 $6$
-
$n$为质数,欧拉函数值为$n-1$
-
若$n=p^{k}$,且$p$为质数,那么$\varphi\left(n\right)=p^{k}-p^{k-1}$
推论:$\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=p\cdot\left(p^{k-1}-p^{k-2}\right)=p\cdot \varphi\left(p^{k-1}\right)$
-
唯一分解定理:
设$n=\prod_{i=1}^{s}p_{i}^{k_{i}}$,其中$p_{i}$是质数,有$\varphi\left(n\right)=n\cdot\prod_{i=1}^{s}\frac{p_{i}-1}{p_{i}}$
-
对于任意不全为0的整数$n,m$,$\varphi\left(nm\right)\cdot\varphi\left(\operatorname{\mathrm{gcd}}\left(n,m\right )\right)=\varphi\left(n\right)\cdot\varphi\left(m\right)\operatorname{\cdot\mathrm{gcd}} \left(n,m\right)$